Semi-3D dosimetry of HDR brachytherapy using a novel Gafchromic EBT3 film-array water phantom

Tony Palmer,
Andy Nisbet and David Bradley
Portsmouth Hospitals NHS Trust, UK
University of Surrey, UK
Purpose

Modern HDR brachytherapy is complex:

- 3D image guidance CT, MRI
- Volume prescribing and OAR
- Inverse planned patient-specific optimisation

But, lack of modern QC:

- Basic tests conceptually removed from the clinical situation
- Source strength, point doses, linear dwell position
Dosimetry for Brachytherapy
Quality Control

High dose gradients, large dose variations, small scales, complex applicators shapes

Current methods generally either too simple (point doses) or too complex (3D research)

Aim is a simple, practical QC test comparing planned and delivered doses for modern 3D HDR brachytherapy
Basic HDR brachytherapy QC
Required, but insufficient
Advanced HDR brachytherapy QC
Inappropriate for routine QC tests

Australian HDR audit, Haworth (2012)

Perspex TLD phantom, Mahdavi (2012)

Presage dosimeter, Palmer (2012)

FBX chemical dosimeter, Bansal (2012)
Renaissance of film?

Single or multiple 2D planes

Gafchromic EBT3 film:

- High spatial resolution,
- Weak energy dependence,
- Near water-equivalence
- Advanced multichannel scanning
 (FilmQAPro software)
Film calibration

• Calibration function for each colour channel.

• Disturbance function, measured colour signal to allowed colours in the dose-to-rgb calibration.

• Separate the dose-dependent and dose-independent parts:
 Eliminates film non-uniformities, many scanner artefacts.

HDR dose measurement

EBT3 film-array in ‘full scatter’ water tank
Film analysis

Exposed film with reference patches

Dose map

Calibration consistency map
Single dwell point

Validate film technique in HDR brachytherapy dose/energy range.

Radial dose measured with film compared to Monte Carlo data
HDR cervix ring and IU treatment applicator

Film dose (thin line) and TPS isodose (thick line), 5 mm from applicator IUT
Film dose (thin line) and TPS isodose (thick line),
15 mm from applicator IUT

HDR cervix ring and IU treatment applicator
HDR cervix ring and IU treatment applicator

2D gamma analysis of difference between film dose and TPS dose for HDR applicator measurement

<table>
<thead>
<tr>
<th>Film position</th>
<th>Gamma criteria</th>
<th>Passing rate: local gamma</th>
<th>Passing rate: global gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm from IU axis</td>
<td>2 % / 2 mm</td>
<td>91.3%</td>
<td>98.3 %</td>
</tr>
<tr>
<td></td>
<td>3 % / 3 mm</td>
<td>99.1%</td>
<td>99.4 %</td>
</tr>
<tr>
<td>15 mm from IU axis</td>
<td>2 % / 2 mm</td>
<td>86.9%</td>
<td>96.8 %</td>
</tr>
<tr>
<td></td>
<td>3 % / 3 mm</td>
<td>99.6%</td>
<td>99.9 %</td>
</tr>
</tbody>
</table>

Standard uncertainty (k=1) 1.5% to 2.7%
Conclusions

• A practical and suitable QC technique for modern 3D HDR brachytherapy using a closely-spaced film array.

• Semi-3D technique, but since 3D >= 2D gamma passing rates, sufficient to assure dose actually delivered is in agreement with that planned.

• Calibration function for Gafchromic EBT3 film derived over 0 to 90 Gy dose range using three colour channel analysis (FilmQAPro software), validated with comparison to MC data.

• Film measurements around a cervix applicator agree with TPS calculations with 2D local gamma passing rate > 99% at 3% 3mm.
Acknowledgements

Travel bursary from Institute of Physics and Engineering in Medicine, UK

Additional funding support and technical information from Ashland ISP, USA
The "First Fleet" (1787), Portsmouth to Sydney, 8 months, 15000 miles